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Abstract. The objective of this study has been to experimentally analyze the correlation structure of
the strong temporal intermittency which characterizes pipe flow close to the transition to turbulence. In
doing so transitional pipe flow has been analyzed by Laser Doppler velocimetry and the Reynolds number
dependence of the covariance function has been studied. The range which has been analyzed covers the
transition to turbulence and moderately developed turbulence (Reynolds number from 1 500 to 5 000). The
correlation structure which has been evidenced is generally in agreement with the deterministic, dynamical,
interpretation of temporal intermittency which explains the intermittent behavior as a result of a saddle
node bifurcation. However, the analysis has evidenced fluctuations even before the onset of turbulence. The
structure of these fluctuations is perfectly autoregressive which leads us to conclude that the transition to
turbulence can be viewed as a transition from linear randomness to (non-linear) homogeneity.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
47.20.-k Hydrodynamic stability – 47.27.-i Turbulent flows, convection, and heat transfer

1 Introduction

Transition to turbulence in pipe flow is still now
an important fundamental problem in fluid mechanics
(e.g. [1,2] and references therein). From a mathematical
point of view, pipe flow is believed to be linearly stable
and yet it is observed to be unstable in the laboratory.
According to Wygnanski and Champagne [3,4] unstable
flow results from instabilities in the inlet region of the pipe
where turbulent patches may be generated by sharp en-
try geometries and/or instability in the boundary layer.
Above a critical value of the Reynolds number (Re) these
turbulent patches do not decay when they move along
the tube so that, at a fixed point in the pipe, turbulent
and laminar motion may be alternatively observed. This
phenomenon yields a strong temporal intermittency which
has been recognized as one of the fundamental mechanism
for the transition to turbulence [5–9]. Laser Doppler ve-
locimetry (LDV) analysis of the correlation structure of
this kind of intermittency has been the main objective of
this experimental study. In doing so the Reynolds number
dependence of the covariance function has been studied.
The range we have analyzed covers the transition to tur-
bulence and moderately developed turbulence (Reynolds
number from 1 500 to 5 000). The flow configuration which
has been analyzed is that obtained in a pipe with a con-
stant pressure head. Turbulent patches were induced by a
sharp inlet. The attention is then focused on the structure
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of the turbulent patches and their propagation along the
tube.

From a theoretical point of view, the onset of tur-
bulence through temporal intermittency has been exten-
sively studied by Manneville and Pomeau [9]. Dynamical
systems which exhibit temporal intermittency are charac-
terized by a regular motion in phase space, interrupted
by randomly distributed bursts of strong chaoticity. Ac-
cording to Manneville and Pomeau [9], the frequency of
turbulent bursts increases as the Reynolds number rises
above a critical value, Rec (for our experiment this criti-
cal Re falls in the interval 1 800-2100). More precisely the
time duration of laminar phases is proportional to some
power of 1/(Re − Rec) so that for Re which approaches
the critical value, the laminar period diverges and there is
no temporal intermittency. Conversely, when Re becomes
large, the period of the laminar phases becomes zero and
the flow becomes homogeneously turbulent.

According to Manneville and Pomeau [9], three types
of intermittency may be distinguished which correspond
to a saddle-node or tangent bifurcation (Type I), Hopf
bifurcation (Type II) and period-doubling (Type III), re-
spectively. However, the intermittency we have observed
is consistent with a tangent or saddle-node bifurcation
(Type I) in which a stable fixed point degenerates in a
chaotic attractor. Although, stochasticity still plays an
important role. According to our findings the flow is char-
acterized by an autoregressive stochastic behavior rather
than by a pure linear deterministic dynamics, even before
the transition to turbulence, therefore the phenomenon
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would be better described in the framework of noisy rather
than deterministic maps. This may have important impli-
cations on the modeling of natural open systems since it
stresses the importance of an endogenous noise component
evolving with the basic set of governing equations. Nev-
ertheless, it has to be stressed that the non-linearity, as
correctly suggested, e.g. by Ruelle [8], has a leading role in
the transition. The presence of intermittent bursts cannot
be explained as an increase in the level of the linear fluctu-
ations. It will be shown, indeed, that these bursts have the
same correlation structure as the one which characterizes
the developed turbulence, i.e. non-autoregressive.

The paper is organized as follows. After presenting the
experimental details along with some basic numerical as-
pects of our analysis (Sect. 2), the mechanics of the inter-
mittent transition is briefly discussed (Sect. 3). Section 4
mainly focuses on the correlation structure of the flow for
different values of the Reynolds number. Conclusions are
drawn in Section 5.

2 Experimental apparatus

Our measurements have been made in a water tun-
nel (Fig. 1). Basically, the hydraulic part is a closed wa-
ter tunnel comprised of an horizontal cylindrical pipe 6
m long, whose inner and outer diameters are 0.05 and
0.06 m, respectively, and a water tank which provides wa-
ter to the horizontal pipe by a direct coupling through a
smooth plastic tube whose diameter is 1/5 of the diameter
of the water tunnel. This kind of coupling realizes a sort
of sudden expansion (aspect ratio 5:1) which produces a
large disturbance at the inlet so that we expect the de-
velopment of weakly turbulent flow also at very modest
values of the Reynolds number. Note that unlike it might
appear from the schematic diagram of Figure 1, the en-
try geometry does not involve sharp edges or corners and
there are not regions of separated flow. The discharge from
the tunnel is obtained through a sudden contraction which
reduces the diameter from 5 cm to 1 cm; the outlet has,
therefore, a geometry which parallels that at the inlet.

An adjustable hydraulic level (see Fig. 1) allows us to
obtain different flow regimes. A secondary hydraulic cir-
cuit powered by two pumps provides to send back the wa-
ter to the tank. The secondary circuit has been specifically
realized in such a way to maintain a constant hydrostatic
pressure drop between the tank and the inlet side of the
water tunnel.

The turbulence we observe is the result (i): of distur-
bances at the inlet and (ii) instability of the boundary
layer in the inlet region of the pipe. Because of the rela-
tively small value of the Reynolds number we have exam-
ined, we expect the first kind of turbulence to dominate.

The LDV system is comprised of an optical part and a
data acquisition system. The optical part was developed
at our laboratory. The test volume is obtained by two
incident laser beams generated by a single 10 mW He-
Ne Laser. To avoid undesirable refraction from the pipe
wall a rectangular cell filled with water was placed around
the pipe at the point where measurements were taken.

The two beams are obtained by a rotating diffraction grat-
ing. The speed of rotation can be varied in order to pro-
duce a frequency shift between the two crossing beams,
which, in turn, allows us to be sensitive to the sign of
the velocity. The diffraction grating is driven by a tunable
digitally controlled brushless-motor. For the experiment
described in this paper, the shift allowed between the two
beams was 0.1 MHz. This value is optimized for the low
velocity range which has been examined in this study.

The data acquisition system is a TSI digital burst cor-
relator, model IFA-655, which has been used with the fol-
lowing operating parameters:

– minimum number of cycles per burst: 8 (this is the
maximum allowed by the system);

– signal-to-noise-ratio mode: high;
– threshold optimization: 55%;
– acquisition mode: Random;
– data sampling method: TBD on.

This last operation mode means that the system was
operated in such a way to count up the particles passing
through the test volume, so that, in addition to velocity
observations, the time between samples was recorded, too.
In this way almost continuous time records were obtained
and proper weight could be given to each sample so that
mean velocities and higher order moments could be calcu-
lated with little or no bias caused by the particle arrival
statistics. No artificial seeding was employed. The sam-
pling rate depended on the Reynolds number. However, it
was never less than 100 Hz.

The nearly continuous series was, then, digitally low
pass filtered (re-sampled) in order to have equi-spaced
samples. The re-sampling rate is given by ∆t = roV̄

−1,
where ro, has been set equal to the linear dimension of the
LDV test space which, in turn, determines the smallest re-
solvable scale by our equipment, ro = 1 mm. Furthermore,
V̄ is the mean value of the velocity time series. The low-
pass filtering operation consists simply in computing the
average value of the velocity during the time interval ∆t,

V (i∆t) =
1
∆t

ni∑
j=1

∆tijuij ;
ni∑
j=1

∆tij = ∆t;

i = 1, . . . ,
T

∆t
(1)

where uij indicates the original velocity time series, ∆tij
is the time between two consecutive samples ui,j , ui,j+1; T
is the total observational period and, finally, ni gives the
number of velocity samples within each time interval ∆t.

The sampling interval, ∆t, average value, standard de-
viation and other parameters relevant to the velocity time
series analyzed in this paper are summarized in Table 1.
The number of data points which is shown in Table 1
is that obtained after the re-sampling procedure outlined
above. The number of data points, before the resampling
operation and for the four Reynolds numbers here consid-
ered, is 20×106 for Re = 1 500, and for Re = 5 000, 6×106

for Re = 2 000 and 12× 106 for Re = 2 500, respectively.
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Fig. 1. Schematic setup of the water tunnel. The plexiglas pipe is 6 meters long. The inner and outer diameter of the pipe are
0.05 and 0.06 meters, respectively.

Table 1. Mean (V̄ ), variance (C(0)) and number of data points (N) for each time series analyzed in this paper. The table
also shows the sampling time ∆t, the measurement or LDV noise σ2

w and the effective turbulence ratio computed according to
Tu =

p
C(0)− σ2

w/V̄ . The digits shown for the different quantities are not affected by measurements error.

Reynolds Number V̄ (ms−1) C(0) (m2s−2) N ∆t (s) σ2
w (m2s−2) Tu (%)

Re = 1 500

X/d = 20 0.04999 3.20 × 10−6 2 022 759 0.020 3.88 × 10−7 3.3

X/d = 60 0.05477 1.60 × 10−6 2 178 856 0.018 5.50 × 10−7 1.9

X/d = 100 0.05886 1.19 × 10−6 2 135 316 0.017 9.13 × 10−7 0.9

Re = 2 000

X/d = 100 0.07505 9.55 × 10−6 831 227 0.013 1.37 × 10−6 3.8

Re = 2 500

X/d = 100 0.07150 3.84 × 10−6 1 840 492 0.014 8.39 × 10−7 8.6

Re = 5 000

X/d = 20 0.12477 2.70 × 10−5 3 235 882 0.0080 2.31 × 10−6 4.0

X/d = 60 0.12549 3.11 × 10−5 3 354 559 0.0079 2.38 × 10−6 4.3

X/d = 100 0.12796 3.21 × 10−5 3 229 227 0.0078 2.33 × 10−6 4.3

The Reynolds number is defined as usual:

Re =
Ud

ν
(2)

with U the mean flow velocity and ν = 10−6 m2s−1 the
kinematic viscosity of water at 20 ◦C.

Because of experimental restrictions, only the compo-
nent of the velocity in the stream wise direction has been
measured. Measurements were considered at three differ-
ent positions along the tube: X/d = 20, 60, 100, where X
gives the distance from the inlet and d is the inner diam-
eter of the tube.

2.1 Assessing the magnitude of LDV noise

Especially at low flow velocity, the analysis of the correla-
tion structure on the basis of variance spectra is hampered
by the inherent LDV noise component (the so-called am-
biguity spectrum, [10]) which adds a constant to the ob-
served spectrum and tends to level-off the spectrum of the
signal. The effect of this constant white noise component
can be seen, e.g., in Figure 2 which shows the variance
spectrum for Re = 5 000. It puts a limit to the highest
turbulence frequency which can be observed.

Nevertheless, this kind of noise is Gaussian, white and
has a constant variance [10]. It affects additively the signal
so that the observations can be represented according to
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Fig. 2. Variance spectrum of the velocity fluctuations for
Re = 5 000.

the following measure model:

V (n∆t) = Vs(n∆t) + w(n∆t); n = 1, . . . , N (3)

with N the number of data points and ∆t the sampling
interval. For the sake of simplicity, in the following we will
assume ∆t = 1 and we will write x(n∆t) = x(n) where x
is a generic variable. In equation (3), V (n) is the observed
velocity, Vs(n) is the true velocity signal and w(n) is a
white component, uncorrelated and with zero mean and
variance σ2

w.
Because of (3) the observed spectrum P (f) is:

P (f) = Ps(f) + 2σ2
w (4)

where Ps(f) denotes the signal spectrum with f the or-
dinary frequency limited to the normalized Nyquist inter-
val 0-0.5. From equation (4) it is evident that the noise
variance, σ2

w may be estimated directly by the observed
spectrum P (f). To this end it suffices to fit a straight line
to the flat portion of the spectrum at higher frequency.

Using this procedure we have estimated the noise vari-
ance for the time series at hand, and the results can be
read in Table 1. Once an estimate of σ2

w has been obtained,
the effective turbulence ratio, Tu, may be computed as
Tu =

√
σ2 − σ2

w/V̄ . Here, σ2 is the variance of the data
points.

Equation (4) says that the white noise affects the spec-
trum at all frequencies. However, if we consider the co-
variance function, then, denoting with C(τ) the observed
covariance at the normalized time-lag τ and with Cs the
covariance function of the signal,

C(τ) =

{
σ2

s + σ2
w for τ = 0

Cs(τ) otherwise
(5)

provided that the noise component w(n) is white. In equa-
tion (5), σ2

s is the variance of the signal and σ2
w is the vari-

ance of the error term, and σ2 = σ2
s +σ2

w is the variance of

the observations. Equation (5) shows that in presence of
a white additive error component, the covariance function
is biased only at the origin. This effect may be easily re-
moved by subtracting a suitable estimate of σ2

w computed,
e.g., as indicated above.

Relation (5) holds for true quantities. In practice, the
covariance function has to be estimated on the basis of a
limited record of data points:

C(τ) =
1
N

N−τ∑
j=1

(V (j + τ) − V̄ )(V (j)− V̄ ) (6)

with V̄ the mean value of the series V (n). At any lag τ ,
C(τ) will be the composition of signal and noise covariance

C(τ) = Cs(τ) + Cw(τ) (7)

with the index s and w denoting signal and noise, respec-
tively. However, for τ 6= 0, we have [11]:{

E(Cw(τ)) = 0

var(Cw(τ) = σ4
w
N

(8)

where E indicates expectation and var stands for variance.
The second of relation (8) says that the effect of the noise
tends to zero as N becomes large. We stress that in our
case N is larger than 106, which means in practice than
the noise, has no relevant effect over the non-null values
of the covariance function of the observations and in any
case relation (8) provides the correct mean square error
for the covariance estimated through relation (6).

In conclusion, the small scale of motion are better ob-
served by considering the covariance function, since this
function is fairly insensitive to the noise in the limit in
which N becomes large.

3 The intermittent transition

Figure 3 shows segments of the velocity time series for the
four Reynolds numbers considered in our analysis. The
data shown in Figure 3 were recorded 100 diameters down-
stream (X/d = 100).

The transitional, intermittent, character of the flow is
quite evident. For Re = 1 500 we saw a rather erratic be-
havior around a mean value. However, for Re = 2 000,
the presence of intermittent bursts was striking. The fre-
quency of these bursts greatly increase for Re = 2 500.
The strong temporal intermittency was no longer visible
for Re = 5 000.

The phenomenology and the mechanism of temporal
intermittency is quite well understood [3]. It is due to the
formation of turbulent patches in the inlet region of the
tube. Below a critical value, Rec, of the Reynolds number
(which for our experiment falls in the interval 1800-2100),
the turbulence generated in the inlet region tends to de-
cay when the flow progresses along the tube. Above Rec,
some of the turbulent patches do not decay so that we
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Fig. 3. Velocity time history for X/d = 100 and for the Reynolds numbers: Re = 1 500, Re = 2 000, Re = 2 500, Re = 5 000,
respectively.

may observe, alternatively, decaying turbulence or grow-
ing patches, hence the phenomenon of temporal intermit-
tency. For Re greater than Rec, the patches grow and
spread rapidly through the tube so that the turbulence
fills all the pipe. At this stage (Re ≥ 4 000) we have de-
veloped turbulence.

This behavior is qualitatively in agreement with the
intermittent route to turbulence predicted by Manneville
and Pomeau [9]. In analogy with a second-order phase
transition, these authors postulate the presence of a criti-
cal value for the Reynolds number, Rec, and assume that
the laminar phases last a typical characteristic time, T
which satisfies the power-law relation:

T ∼ (Re−Rec)−γ Re > Rec and γ > 0. (9)

Then, for Re which approaches the critical value, the time
duration of laminar phases becomes infinity, whereas for
Re � Rec the period tends to zero and we have only the
turbulent phase.

The qualitative agreement between this scenario and
our results is evident from the sequence of events shown
in Figure 3. For Re = 1 500 we have no evidence of bursts,
from which we could argue that the laminar phase lasts
infinity. From Re = 2 000 to 2 500 the frequency of bursts
clearly increases with Re, hence the duration of the lami-
nar phases decreases with Re. Finally, for Re = 5 000, we
have no evident presence of laminar insertions, so that we
could argue that now the duration of the laminar phases
is zero. A quantitative analysis of the duration of laminar
phases has been accomplished out by various author (e.g.
see [12,13]. In particular, Zhang et al. [13] found that the
intermittent factor γ is close to 1. Furthermore, these au-
thors showed that stochastic arguments accounted well for
their experiment. Although, with a different methodology
and experimental apparatus, our findings agree with those

of Zhang et al. [13] and indicates that the leading mecha-
nism is the random generation of turbulent patches at the
pipe entrance, along with energy dissipation due to fluid
viscosity and friction. Our methodology directly addresses
the nature of velocity fluctuations as will be shown in the
next section.

4 Statistical characterization of the transition

An ergodic dynamical system evolving on an attracting
set may be represented through the evolution equation
of one of its variables [14]. For systems sampled at dis-
crete time, the description is obtained through a finite-
difference equation:

x(n) = F (x(n − 1), x(n− 2), ..., x(n−m)) (10)

where F is a smooth, generally unknown function, x(n)
denotes a generic variable of the system at the discrete-
time n∆t. The auto-regression over m previous realiza-
tions of the variable gives the needed initial conditions.
Traditionally chaos has referred only to a purely deter-
ministic system and has been considered a distinct alter-
native to stochastic modeling. However, from a physical
point of view, for systems which have attained their sta-
tionary state, it is much more interesting to understand
whether F is linear or not without the presupposition that
the system is deterministic. The description of dynamical
systems may be then generalized to include stochasticity
simply by adding on the right hand side of equation (10)
an additive noisy term [15]:

x(n) = F (x(n− 1), x(n− 1), ..., x(n−m)) + w(n) (11)

where the noisy term is added to the evolution equation,
and therefore it evolves with the map (endogenous noise).
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If F is linear then the above equation defines an autore-
gressive process [11]. Although equation (11) is a stochas-
tic process, its covariance function is strictly deterministic.

If F is linear, the covariance function is given by the
following relation:

Cs(τ) = Cs(0)
p∑
i=1

ai cos(2π
τ

Ti
) exp(− τ

τi
) (12)

with the normalizing condition
p∑
i=1

ai = 1 (13)

where p is the number of oscillating modes of the system
and the parameters Ti and τi depends on the given system.
Relation (12) holds provided that the system is station-
ary. When m = 1 then the only possibility is p = 1 and
only an exponential damping is possible. For m = 2 it is
possible to have an oscillating mode or a combination of
two exponential decays. If F is not linear then the covari-
ance function will be no more represented by relation (12).
Thus, the discrimination between an autoregressive (lin-
ear) process (which gives place to regular attractors) and
a non-linear one (non-regular attractor) may be simply
based on testing whether or not relation (12) provides a
good model for the correlation structure of the series at
hand.

It may happen that even for a non-linear F , the sys-
tem may attain a regular attractor. However, in this case
the correlation structure has still to obey relation (12). In
other words, our method looks at the correlation proper-
ties rather than directly at the shape of F and therefore
cannot be fooled by trivial non-linearity.

This methodology may be infinitely sophisticated and
it provides, indeed, the common background to the short-
term predictability methods to identify chaos which dates
back to Farmer and Sidorowich [16]. The formalization
of the method in the context of auto-regressive processes
has been provided by one of the authors [17,18]. Since, for
this experiment the covariance function may be computed
with high accuracy, there is no need to introduce extra-
complications.

According to the above methodology, our analysis will
be mostly based on the covariance function (de-biased at
the origin for the effect of LDV noise; see Sect. 2.1) of the
velocity fluctuations.

We will begin with the analysis of the disturbances
which originate close to the inlet region. These distur-
bances may be viewed as the driving force of the velocity
fluctuations far away from the inlet. As shown in the pre-
vious section, it is just the way in which these disturbances
progress along the pipe which originates the temporal in-
termittency.

4.1 The inlet turbulence, X/d = 20

Close to the inlet, the covariance function, irrespec-
tive of the Reynolds number, is well reproduced by a
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Fig. 4. Covariance function (circles) normalized to the vari-
ance of the series, R(τ ) = Cs(τ )/Cs(0), against the normalized
time scale, τ . The Reynolds number is 1 500, X/d = 20. The
solid line is the model fitted to the data points.

pure algebraic model (e.g., see Fig. 4 which illustrates
the case Re = 1 500)

R(τ) =
Cs(τ)
Cs(0)

=
a

a+ τα
(14)

where Cs(0) is the variance of the signal, a and α are
parameters to be determined.

The model (14) can be also put in the form

Cs(τ)
Cs(0)

=
1

1 + ( τ
τo)α )

(15)

with τo = a(1/α).
According to our results, the exponent α is fairly inde-

pendent of Re, whereas the cut-off scale critically depends
on Re, the higher Re, the smaller τo, as it is to be expected,
since this scale is simply associated to the average size of
the disturbances, that is the turbulent patches, generated
at the inlet. While the shape of the disturbances which is
determined by the exponent α does not change (the mech-
anism which generates the turbulence remains the same),
their size tends to decrease as Re increases because the
flow becomes much more turbulent.

The best fit values for τo and α are τo = 21.80± 0.09,
α = 1.636 ± 0.004, in the case of Re = 1 500. For Re =
5 000, we have τo = 8.30± 0.05, α = 1.619± 0.006.

It should be noted that the covariance function of the
observations tends to zero as τ becomes large which leads
us to conclude that the underlying process is stationary.
Furthermore, the covariance function is badly reproduced
by a linear autoregressive model, which means that in a
phase space description the system does not evolve on a
regular attractor.
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4.2 Turbulence far away from the inlet

In this section, we will focus on the correlation structure of
the flow far away from the inlet. For the sake of brevity, we
will mostly limit ourselves to consider the case X/d = 100.
At this distance from the inlet the intermittent transition
is fairly well-observed.

We will start with the correlation structure before the
intermittent transition (Re = 1 500), then we will be deal-
ing with the case after the transition (i.e. Re = 5 000).
The transitional region will be described in the end, since
this case encompasses aspects which are peculiar to both
laminar and turbulent flow.

4.2.1 Re = 1 500, X/d = 100

Below a critical Re, which for our experiment falls in the
interval 1800-2100, the turbulence generated at the inlet
just decays while the flow moves downstream. This can
be seen for Re = 1 500. From Table 1, we have that for
X/d = 20 the turbulence intensity is about 3%, the inten-
sity becomes less than 2% at a distance of 60 diameters
downstream and is less than 1% at 100 diameters down-
stream.

The observed covariance function for X/d = 100 is
shown in Figure 5. Comparing this figure to Figure 4,
which shows R(τ) for X/d = 20, the dramatic change in
the correlation structure emerges evident. The covariance
function becomes negative, which indicates the presence
of an oscillatory component, although dampened, in the
velocity time series.

For this case the observed covariance function is well
fitted by a linear process (model (12) with p = 2). The
comparison between model and observations is provided
in Figure 5. The best fit values for the six parameters: a1

and a2, T1 and T2, τ1 and τ2 are here summarized:
a1 = 0.574± 0.006 a2 = 1− a1 = 0.426± 0.006
T1 = 2385± 6 T2 = 1328± 3
τ1 = 626± 3 τ2 = 493± 2.

(16)

Relation (12) is the covariance function of a stochastic
autoregressive (linear) process. The Fourier transform of
this covariance function gives the power spectrum, P (f),

Ps(f)
Cs(0)

=
2∑
i=1

2aiγi
γ2
i + [2πf − βi]2

+
2∑
i=1

2aiγi
γ2
i + [2πf + βi]2

(17)

where f is the usual frequency and γi = 1/τi, βi = 2π/Ti.
For f which becomes large, we have:

Ps(f) ∼ f−2. (18)

This last result is completely analogous to the basic law
of Brownian motion and illustrates how systems which
mimic Brownian motion may simple arise as limiting case
of mere autoregressive (linear) stationary processes.

It should be stressed that the various time constants
appearing in the formula above for the covariance function
are not strictly related with the size of the disturbances
at the inlet, when rather with the way these disturbances
decay along the tube. The decay is related to the geometry
of the whole tube, fluid viscosity and the friction that the
patches experiences while moving downstream. The cor-
relation structure of the disturbances has been shown to
be algebraic-like (see Sect. 4.1), whereas the form of the
covariance function (14) is completely analogous to that
of a dampened mechanical oscillator with two different os-
cillating modes. The two damping constants, τ1 and τ2 are
related to the distance the disturbance would travel be-
fore viscosity dampens it. Finally, it should be noted that
oscillating modes are not unlikely in pipe flow, provided
the length/diameter ratio of the pipe is greater than 60
(this ratio is 120 in our experiment) [2].

4.2.2 Re = 5 000, X/d = 100

For Re = 5 000, the turbulence begins to grow while the
flow progresses downwards. Figure 6 compares the two
covariance functions for X/d = 60 and 100, respectively.
It is possible to see that they are almost indistinguishable
each from other, which leads us to conclude that the flow
tends to become spatially homogeneous.

Because of the relatively low Reynolds number, we ex-
pect the viscous effect to be dominant so that no inertial
range has to be expected. For this reason an exponen-
tial cut-off in the energy spectrum is expected and, conse-
quently, the covariance function should be well represented
by a Lorentzian model,

R(τ) =
1

1 + ( ττo )α
(19)
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Fig. 6. Comparison between the two normalized covariance
functions for X/d = 60 (dash-dotted line) and X/d = 100
(solid line). The Reynolds number is Re = 5 000.

with the parameter α = 2. For τ small enough, the re-
lation (19) predicts that the second-order structure func-
tion, S(τ) = 2Cs(0)(1 − R(τ)) ∼ τ2, which is the usual
law assumed for the dissipative range.

The model (19) represents very well the correlation
structure of the flow. However, it predicts a decaying to
zero of Cs(τ) which is slightly lower than that observed.
Better agreement is found if we allow for an extra expo-
nential damping factor,

R(τ) =
1

1 + ( ττo )α
exp (− τ

µo
). (20)

Figure 7 compares the covariance function to the
model (20), for X/d = 100. Here, α has been considered
as an adjustable parameter. We found α = 1.936± 0.004
which is very close to the expected value of 2. Indeed,
no appreciable difference may bee seen in the model fit-
ted to the data if we just set α = 2. For the two cut-off
scales, τo and µo the value of 8.53± 0.08 and 35.02± 0.05
have been found, respectively. These values may be com-
pared to those obtained for X/d = 60: α = 1.938± 0.004
τo = 8.30± 0.08 and µo = 35.60± 0.05.

It is quite remarkable that the presence of the sec-
ond time scale is of the order of the diameter of the pipe.
By invoking Taylor’s frozen turbulence hypothesis [19], µo

corresponds to 35.6 mm which may be compared to the di-
ameter of the pipe which is 50 mm. On the other hand, τo
may be understood as the microscale of turbulence or the
typical size of the smallest eddies in the flow [19]. This
connection may be made rigorous from a mathematical
point of view. According to Tennekes and Lumley [20] the
Taylor microscale is associated with the curvature, λ2 of
the autocorrelation function, which in turn is defined by:

d2R(τ)
dτ2

‖τ=0≡
−2
λ2

(21)
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Fig. 7. Covariance function (circles) normalized to the vari-
ance of the series, R(τ ) = Cs(τ )/Cs(0), against the normalized
time scale, τ . The Reynolds number is 5 000, X/d = 100. The
solid line is the model fitted to the data points.

Taking the second derivative of equation (20) and com-
puting it at τ = 0, we have

d2R(τ)
dτ2

‖τ=0=
−2
τ2
o

+
1
µ2

o

≈ −2
τ2
o

(22)

from which τo ≈ λ (we have used α = 2). It should be
stressed, however, that the Taylor microscale is not the
smallest length scale occurring in turbulence [20]). For
our experiment, it simply measures the average size of
the turbulent patches, which tend to be highly localized.
However, the patches themselves still contain eddies.

Finally, it is noteworthy that the large scale exponen-
tial damping factor introduces a Lorentzian behavior in
the energy spectrum at low values of the wavenumber.
This behavior is in agreement with experimental stud-
ies on spectral distribution of the longitudinal turbulence
velocity component (e.g. [19], p. 67, Figs. 1-18 and re-
lated discussion in the text) which systematically show
a Lorentzian behavior in the part of the spectrum which
pertains to low values of frequency/wavenumber.

Finally, we want to stress that the covariance func-
tion for Re = 5 000 and any X/d is badly represented
by the linear model (12) for any choice of p. We have
also checked that a pure damped (exponential) model
(βi = 0) yields a poor model for the covariance function.
In other words there is no good linear representation for
the correlation structure for Re = 5 000. The disturbances
originated in the inlet region of the pipe just progress
almost undisturbed downstream and conserves their
non-autoregressive correlation structure.

4.2.3 Re = 2 500, X/d = 100

Figure 8 shows a plot of the covariance function for Re =
2500 and X/d = 100. Its long tail is quite evident, however
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ance of the series, R(τ ) = Cs(τ )/Cs(0), against the normalized
time scale, τ . The Reynolds number is 2500, X/d = 100. The
solid line is the model fitted to the data points.

close to the origin the function has an evident cross-over
behavior.

We think that the covariance function crosses-over
from an algebraic behavior, which characterizes the lo-
cally disordered flow (turbulent patches), to a dampened
oscillation which is characteristic of the decaying turbu-
lence. In other words, the flow contains both locally disor-
dered flow whose statistical structure is the same as that
which characterizes the flow for Re = 5 000 and decaying
turbulence which has a behavior as that found, e.g., for
Re = 1 500.

To check this hypothesis, we consider for the covari-
ance function the model:

Cs(τ)
Cs(0)

=
2∑
i=1

ai cos(2π
τ

Ti
) exp(− τ

τi
)

+ a3
1

1 + (τ/τo)2
exp (− τ

µo
) (23)

with a1 +a2 +a3 = 1. The model above is just the compo-
sition of a small-scale Lorentzian-exponential decay and a
large-scale autoregressive behavior.

The best fit is shown in Figure 8 and we see that the
agreement is perfect. The value of the parameters is here
summarized:

a1 = 0.29± 0.02 a2 = 0.47± 0.02
T1 = 776± 25 T2 = 2400± 37
τ1 = 1450± 190 τ2 = 636± 4
τo = 16.0± 0.5 µo = 51.0± 0.5

(24)

and a3 = 1− a1 − a2 = 0.24± 0.03.
This last result just emphasizes that the correlation

structure of the turbulent bursts is not autoregressive, so
that temporal intermittency by no way can be explained

as a spatially localized increase of the level of the linear
fluctuations.

To summarize, we have that far away from the inlet,
the covariance function obeys the following laws as a func-
tion of the Reynolds number:

Cs(τ)
Cs(0)

=



2∑
i=1

ai cos (2π
τ

Ti
) exp (− τ

τi
). (25.1)

(
∑
i=1

2
ai cos (2π

τ

Ti
) exp(− τ

τi
))

+a3
1

1 + ( ττo )2
exp (− τ

µo
). (25.2)

1
1 + ( ττo )2

exp (− τ

µo
). (25.3)

where the first of the equations (25) applies to Re = 1 500,
the second to Re = 2 500 and the last to Re = 5 000.
For Re = 1 500, the character of the fluctuations is linear
and mimics 1/f2 noise at high frequency. Conversely, for
Re = 5 000 the character is Lorentzian-exponential like. At
the transition (Re = 2 500) both behaviors are present.

5 Summary and conclusions

In this paper we have analyzed the Reynolds number de-
pendence of the covariance function for pipe flow. Obser-
vations of the stream wise component of the velocity field
have been reported for different locations along the axis
of the tube, namely X/d =20, 60, 100, where X denotes
the distance from the inlet and d is the inner diameter of
the pipe. The Reynolds numbers we have analyzed cover
the range 1 500 to 5 000, that is, transition to turbulence
and moderately developed turbulence. The main features
of our experimental results can be summarized as follows:

– Turbulence was induced by using a sharp inlet.
– For Re ≤ 1800, turbulence did not grow, it was damp-

ened by viscosity and the most interesting characteris-
tics was a very long-range dynamical correlation which
yielded 1/f2 noise, although as a limiting case of an
autoregressive (linear) behavior.

– A cross-over character of the flow was evident in be-
tween Re = 2 000−4 000. In this case the most disor-
dered part of the flow was spatially localized in the pipe
which yielded the characteristic phenomenon of tem-
poral intermittency. Both decaying and non-decaying
turbulence was easily recognized in the flow.

– For values of Reynolds number greater than Re = 4 000
(we have extensively analyzed the case Re = 5 000)
the turbulence grew while the flow progressed down-
stream and tended rapidly towards homogeneity. The
covariance function was, then, well described by a
Lorentzian-like (algebraic) model with an extra expo-
nential dampening factor.

The correlation structure of developed turbulence was,
then, identical to that of the strong bursts present at the
onset and was in any case non-autoregressive which leads
us to conclude for the presence of a non-linear dynamics.
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From a dynamical point of view our results may be
interpreted on the basis of a set of differential equation
governing the flow. Away from the inlet, the flow is linear
below a critical Re and non-linear above. However, our
findings are consistent with this picture only if assume
that the system is driven by a stochastic force which sim-
ulate the disturbances originated at the inlet. Since, these
disturbances themselves generate the phenomenon of in-
termittency, the phenomenon appear to be intrinsically
stochastic.

In this respect, our findings seem to be in better
agreement with the idea of phase-transition from lin-
ear fractality to homogeneity, recently introduced by
Bershadskii [21] in a different context. The flow, then,
should crosses-over from a random mono-fractal structure
to a multifractal structure. Before transition the mono-
fractal structure is, indeed, consistent with the 1/f2 noise
behavior we have evidenced for Re = 1 500. From our pre-
liminary results on the transition, a multifractal behavior
has been evidenced for Re = 6 000 [22].
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